Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Multi-site wind speed prediction based on graph dynamic attention network
Bolu LI, Li WU, Xiaoying WANG, Jianqiang HUANG, Tengfei CAO
Journal of Computer Applications    2023, 43 (11): 3616-3624.   DOI: 10.11772/j.issn.1001-9081.2022111749
Abstract166)   HTML4)    PDF (4716KB)(140)       Save

The task of spatio-temporal sequence prediction has a wide range of applications in the fields such as transportation, meteorology and smart city. It is necessary to learn the spatio-temporal characteristics of different data with the combination of external factors such as precipitation and temperature when making station wind speed predictions, which is one of the main tasks in meteorological forecasting. The irregular distribution of meteorological stations and the inherent intermittency of the wind itself bring the challenge of achieving wind speed prediction with high accuracy. In order to consider the influence of multi-site spatial distribution on wind speed to obtain accurate and reliable prediction results, a Graph-based Dynamic Switch-Attention Network (Graph-DSAN) wind speed prediction model was proposed. Firstly, the distances between different sites were used to reconstruct the connection of them. Secondly, the process of local sampling was used to model adjacency matrices of different sampling sizes to achieve the aggregation and transmission of the information between neighbor nodes during the graph convolution process. Thirdly, the results of the graph convolution processed by Spatio-Temporal Position Encoding (STPE) were fed into the Dynamic Attention Encoder (DAE) and Switch-Attention Decoder (SAD) for dynamic attention computation to extract the spatio-temporal correlations. Finally, a multi-step prediction was formed by using autoregression. In experiments on wind speed prediction on 15 sites data in New York State, the designed model was compared with ConvLSTM, Graph Multi-Attention Network (GMAN), Spatio-Temporal Graph Convolutional Network (STGCN), Dynamic Switch-Attention Network (DSAN) and Spatial-Temporal Dynamic Network (STDN). The results show that the Root Mean Square Error (RMSE) of 12 h prediction of Graph-DSAN model is reduced by 28.2%, 6.9%, 27.7%, 14.4% and 8.9% respectively, verifying the accuracy of Graph-DSAN in wind speed prediction.

Table and Figures | Reference | Related Articles | Metrics